skip to main content


Search for: All records

Creators/Authors contains: "Bian, Xiaopeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteriaSynechococcuswill respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study,Synechococcusisolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations inSynechococcusstrains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.

     
    more » « less
    Free, publicly-accessible full text available February 20, 2025
  2. Abstract

    Oxygen‐deficient zones (ODZs) play an important role in the distribution and cycling of trace metals in the ocean, as important sources of metals including Fe and Mn, and also as possible sinks of chalcophile elements such as Cd. The Eastern Tropical North Pacific (ETNP) ODZ is one of the three largest ODZs worldwide. Here, we present results from two sectional surveys through the ETNP ODZ conducted in 2018, providing high‐resolution concentrations of several metals, along with complimentary measurements of nutrients and iodine speciation. We show that samples obtained from the ship's regular rosette are clean for Cd, Mn, Ni, and light rare earth elements, while uncontaminated Fe, Zn, Cu, and Pb samples cannot be obtained without a special trace‐metal clean sampling system. Our results did not show evidence of Cd sulfide precipitation, even within the most oxygen‐depleted water mass. High Mn and Ce concentrations and high Ce anomalies were observed in low‐oxygen seawater. These maxima were most pronounced in the upper water column below the oxycline, coincident with the secondary nitrite maxima and the lowest oxygen concentrations, in what is generally considered the most microbially active part of the water column. High Mn and Ce features were also coincident with maxima in excess iodine, a tracer of shelf sediment sources. Mn and Ce maxima were most prominent within the 13°C water mass, spanning a density horizon that enhances isopycnal transport from the shelf sediments, resulting in transport of Mn and Ce at least 2500 km offshore.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Despite the Pacific being the location of the earliest seawater Cd studies, the processes which control Cd distributions in this region remain incompletely understood, largely due to the sparsity of data. Here, we present dissolved Cd and δ114Cd data from the US GEOTRACES GP15 meridional transect along 152°W from the Alaskan margin to the equatorial Pacific. Our examination of this region's surface ocean Cd isotope systematics is consistent with previous observations, showing a stark disparity between northern Cd‐rich high‐nutrient low‐chlorophyll waters and Cd‐depleted waters of the subtropical and equatorial Pacific. Away from the margin, an open system model ably describes data in Cd‐depleted surface waters, but atmospheric inputs of isotopically light Cd likely play an important role in setting surface Cd isotope ratios (δ114Cd) at the lowest Cd concentrations. Below the surface, Southern Ocean processes and water mass mixing are the dominant control on Pacific Cd and δ114Cd distributions. Cd‐depleted Antarctic Intermediate Water has a far‐reaching effect on North Pacific intermediate waters as far as 47°N, contrasting with northern‐sourced Cd signatures in North Pacific Intermediate Water. Finally, we show that the previously identified negative Cd* signal at depth in the North Pacific is associated with the PO4maximum and is thus a consequence of an integrated regeneration signal of Cd and PO4at a slightly lower Cd:P ratio than the deep ocean ratio (0.35 mmol mol−1), rather than being related to in situ removal processes in low‐oxygen waters.

     
    more » « less
  6. Abstract

    The Thomas Fire began on December 4, 2017 and burned 281,893 acres over a 40‐day period in Ventura and Santa Barbara Counties, making it one of California's most destructive wildfires to date. A major rainstorm then caused a flash flood event, which led to the containment of the fire. Both airborne ash from the fire and the runoff from the flash flood entered into the Santa Barbara Basin (SBB). Here, we present the results from aerosol, river, and seawater studies of black carbon and metal delivery to the SBB associated with the fire and subsequent flash flood. On day 11 of the Thomas Fire, aerosols sampled under the smoke plume were associated with high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m3, 1.05 μg/m3, and 14.93 μg/m3, respectively) and aerosol metal concentrations were consistent with a forest fire signature. Metal concentrations in SBB surface seawater were higher closer to the coastal perimeter of the fire (including 2.22 nM Fe) than further off the coast, suggesting a dependence on continental proximity rather than fire inputs. On days 37–40 of the fire, before, during, and after the flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge allowing us to estimate the input of fire products into the coastal ocean. We estimated rapid aerosol delivery during the fire event to be the larger share of fire‐derived metal transport compared to runoff from the Ventura River during the flood event.

     
    more » « less